已经观察到图形神经网络(GNN)有时难以在跨节点上建模的长距离依赖性之间保持健康的平衡,同时避免了诸如过天平的节点表示的非线性后果。为了解决这个问题(以及其他事情),最近提出了两个单独的策略,即隐含和展开的GNN。前者将节点表示作为深度平衡模型的固定点,其可以有效地促进横跨图形的任意隐式传播,具有固定的存储器占用。相反,后者涉及将图形传播作为应用于某些图形正则化能功能的展开渐变迭代处理。在这种情况下激励,在本文中,我们仔细阐明了这些方法的相似性和差异,量化了他们所产生的解决方案的明确情况实际上是等同的,而行为发散的其他方法。这包括分析会聚,代表能力和解释性。我们还提供各种综合和公共现实世界基准的经验性头脑比较。
translated by 谷歌翻译
尽管近期图形神经网络(GNN)成功,但常见的架构通常表现出显着的限制,包括对过天飞机,远程依赖性和杂散边缘的敏感性,例如,由于图形异常或对抗性攻击。至少部分地解决了一个简单的透明框架内的这些问题,我们考虑了一个新的GNN层系列,旨在模仿和整合两个经典迭代算法的更新规则,即近端梯度下降和迭代重复最小二乘(IRLS)。前者定义了一个可扩展的基础GNN架构,其免受过性的,而仍然可以通过允许任意传播步骤捕获远程依赖性。相反,后者产生了一种新颖的注意机制,该注意机制被明确地锚定到底层端到端能量函数,以及相对于边缘不确定性的稳定性。当结合时,我们获得了一个非常简单而强大的模型,我们在包括标准化基准,与异常扰动的图形,具有异化的图形和涉及远程依赖性的图形的不同方案的极其简单而强大的模型。在此过程中,我们与已明确为各个任务设计的SOTA GNN方法进行比较,实现竞争或卓越的节点分类准确性。我们的代码可以在https://github.com/fftyyy/twirls获得。
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
形状信息在医学图像中分割器官方面是强大而有价值的先验。但是,当前大多数基于深度学习的分割算法尚未考虑形状信息,这可能导致对纹理的偏见。我们旨在明确地对形状进行建模并使用它来帮助医疗图像分割。先前的方法提出了基于变异的自动编码器(VAE)模型,以了解特定器官的形状分布,并通过将其拟合到学习的形状分布中来自动评估分割预测的质量。我们旨在将VAE纳入当前的分割管道中。具体而言,我们提出了一种基于伪损失和在教师学习范式下的VAE重建损失的新的无监督域适应管道。两种损失都是同时优化的,作为回报,提高了分割任务性能。对三个公共胰腺细分数据集以及两个内部胰腺细分数据集进行了广泛的实验,显示了一致的改进,骰子分数中至少有2.8分的增益,这表明了我们方法在挑战无监督的域适应性方案中对医学图像分割的有效性。我们希望这项工作能够在医学成像中提高形状分析和几何学习。
translated by 谷歌翻译
未配对的图像到图像翻译旨在找到源域和目标域之间的映射。为了减轻缺乏源图像的监督标签的问题,通过假设未配对的图像之间的可逆关系,已经提出了基于周期矛盾的方法来保存图像结构。但是,此假设仅使用图像对之间的有限对应关系。最近,使用基于贴片的正/负学习,对比度学习(CL)已被用来进一步研究未配对图像翻译中的图像对应关系。基于贴片的对比例程通过自相似度计算获得阳性,并将其余的斑块视为负面。这种灵活的学习范式以低成本获得辅助上下文化信息。由于负面的样本人数令人印象深刻,因此我们有好奇心,我们基于一个问题进行了调查:是否需要所有负面的对比度学习?与以前的CL方法不同,在本文中,我们从信息理论的角度研究了负面因素,并通过稀疏和对补丁进行排名来引入一种新的负面修剪技术,以用于未配对的图像到图像翻译(PUT) 。所提出的算法是有效的,灵活的,并使模型能够稳定地学习相应贴片之间的基本信息。通过将质量置于数量上,只需要几个负贴片即可获得更好的结果。最后,我们通过比较实验验证了模型的优势,稳定性和多功能性。
translated by 谷歌翻译
自动皮肤癌诊断的最新进展情况会产生与董事会认证的皮肤科医生的表现。然而,这些方法将皮肤癌诊断制定为简单的分类任务,解除了病变细分的潜在益处。我们认为,准确的病变分割可以补充具有添加性病变信息的分类任务,例如不对称,边界,强度和物理尺寸;反过来,忠诚的病变分类可以支持判别病变特征的分割任务。为此,本文提出了一个名为MT-TransUnet的新的多任务框架,该框架是MT-TransUnet,它能够通过在变压器中调解多任务令牌来协同分割和分类皮肤病。此外,我们引入了双重任务和参加区域一致性损失,以利用这些图像,没有像素级注释,确保在遇到与增强的账户时遇到相同图像时的模型的稳健性。我们的MT-TransUnet超过了ISIC-2017和PH2中的病变细分和分类任务的先前现有技术;更重要的是,它保留了有关模型参数(48m〜与〜130m)和推理速度的令人信服的计算效率(每张图片0.17s〜与〜2.02s)。代码将在https://github.com/jingyechen/mt-transunet上获得。
translated by 谷歌翻译
我们提出了空间感知内存队列,用于从放射线照相图像中的内绘和检测异常(缩写为鱿鱼)。放射造影成像协议专注于特定的身体区域,因此在患者中产生具有良好相似性和产生复发解剖结构的图像。要利用此结构化信息,我们的鱿鱼包括一个新的内存队列和特征空间中的新型内绘制块。我们表明鱿鱼可以将根深蒂固的解剖结构分类为复发模式;在推理中,鱿鱼可以识别图像中的异常(看不见的图案)。鱿鱼在两个胸部X射线基准数据集上超过5点以上的未经监督异常检测到现有技术。此外,我们已经创建了一个新的数据集(Digitanatomy),其在胸部解剖学中合成空间相关和一致的形状。我们希望Digitanatomy可以促使异常检测方法的开发,评估和解释性,特别是用于射线照相成像。
translated by 谷歌翻译
我们提出了一种简单而有效的内插的正则化技术,以改善图形神经网络(GNN)的概括。我们的方法利用了混合规范器的最新进展,用于视觉和文本,其中随机样品对及其标签被插入以创建用于培训的合成样品。与图像或自然句子不同,图表具有任意结构和拓扑,甚至简单地删除或添加一个边缘,从图形中可以显着改变其语义含义。这使插值图输入非常具有挑战性,因为混合图对可以自然地创建具有相同结构但具有冲突标签的图形,导致歧管入侵问题。要应对这个障碍,我们提出了一个简单的输入混合模式,用于在图形上混合,自模糊。我们理论上证明,如果有温和的假设,ifmixup保证了混合图是无剥离的侵扰。我们还经验验证IFMixup可以有效地规范图形分类学习,从而在流行的图形增强基线上产生卓越的预测精度。
translated by 谷歌翻译
深度学习的成功严重依赖于具有广泛标签的大型和多样化的数据集,但我们常常只能访问与部分标签相关的几个小型数据集。在本文中,我们开始了一个新的倡议,“数据组装”,旨在释放来自公共数据集的组装部分标记数据的全部潜力。具体而言,我们介绍了一种新的动态适配器来编码不同的视觉任务,这解决了无与伦比,异构,甚至相互冲突的标记协议的挑战。我们还使用伪标记和一致性约束来利用缺少标签的数据并在数据集中减轻域间隙。从严格的评估到三个自然成像和六个医学成像任务,我们发现从“消极例子”的学习促进了感兴趣的课程的分类和分割。这揭示了新的光线对稀有疾病和新兴淫荡的计算机辅助诊断,其中“正示例”难以收集,但“负例”相对容易组装。除了超过Chestxray基准中的现有技术外,我们的模型对于识别少数群体类别的疾病特别强烈,平均屈服于3点的改善。值得注意的是,在使用现有的部分标签时,我们的模型性能与使用完整标签的符合额度,无需额外的40%的注释成本。代码将在https://github.com/mrgiovanni/dataAsseMble提供。
translated by 谷歌翻译
我们考虑随机对照试验的差异问题,通过使用与结果相关的协变量但与治疗无关。我们提出了一种机器学习回归调整的处理效果估算器,我们称之为Mlrate。 Mlrate使用机器学习预测结果来降低估计方差。它采用交叉配件来避免过度偏置,在一般条件下,我们证明了一致性和渐近正常性。 Mlrate对机器学习的预测较差的鲁棒步骤:如果预测与结果不相关,则估计器执行渐近的差异,而不是标准差异估计器,而如果预测与结果高度相关,则效率提升大。在A / A测试中,对于在Facebook实验中通常监测的一组48个结果指标,估计器的差异比简单差分估计器差异超过70%,比仅调整的共同单变量过程约19%用于结果的预测值。
translated by 谷歌翻译